OpenArms: Towards Low-cost Robotic Manipulation

Morgan Quigley and Reuben Brewer and Andrew Y. Ng
Computer Science Department
Stanford University
353 Serra Mall
Stanford, California 94305

Abstract

In this paper, we discuss an approach by which we
hope to make low-cost manipulators more easily avail-
able, thereby enabling robotic manipulation to scale to
larger, more complex, and more pervasive deployments.
We present a design approach which intends to produce
a low-cost manipulator capable of performing useful
tasks in unstructured environments. We provide histor-
ical motivation for this approach, and discuss the trade-
offs made in its design.

Introduction

Numerous challenges stand in the way of widespread de-
ployment of general-purpose robots, ranging from theoret-
ical topics in virtually every branch of artificial intellgence
to more prosaic maintenance issues associated with complex
robots. We propose that progress towards these challenges
can be made, indirectly, by enlarging the pool of people
with access to robots. We draw inspiration from numerous
success stories in recent engineering practice, and believe
that analogous steps could be made towards the develop-
ment of “personal robots.” More specifically, we propose
that robotic hardware for is often overbuilt, and that a “good
enough,” or satisficing, approach to robotic hardware design
may be beneficial in the drive for general-purpose robots.

Historical View

At a risk of oversimplifying engineering history, we briefly
mention three separate instances to illustrate the case for
lowering the cost of robotic manipulators.

First, the 1908 introduction of the Ford Model T revolu-
tionized the automobile industry (Brooke 2008). It offered
few features and the vehicle was chiefly designed to enable
its mass production. However, it offered enough functional-
ity, at a sufficiently low price point, that the nascent automo-
tive industry was able to develop a loyal following. It should
further be noted that a network of improved roads came after
the invention of a low-cost automobile!

Closer to the topic at hand, the personal computers of the
late 1970s deliberately reduced performance to allow their
pricing to be widely accessible. The Apple 11, particularly,
employed numerous clever engineering feats in order to at-
tain sufficient performance (Wozniak and Smith 2007). It

was by no means the fastest computer of its day; minicom-
puters of the era were far more powerful, and far more ex-
pensive. Despite being inferior in every performance met-
ric, the widespread deployment of the early personal com-
puter allowed a huge audience the ability to experiment with
computing. We note that VisiCalc, the first spreadsheet pro-
gram for personal computers, was developed after their in-
troduction. The use of personal computers in the workplace
quickly became economically justifiable, but this was not
obvious at the outset.

Finally, the affordability and availability of simple
differential-drive robots such as the Pioneer series played
a role in the recent advances in robotic mapping. Equipped
with sonar or LIDAR sensors, these robots and similar mini-
malist platforms allowed robotic mapping and navigation al-
gorithms to be readily reproducable in virtually any robotics
laboratory. Furthermore, these platforms allowed for re-
search into multi-robot mapping and control, which would
have been prohibitively expensive with more expensive plat-
forms.

We mention these historical developments to justify the
design of simple and intentionally feature-limited manipu-
lators. We also note that the “killer app” of a particular
technology is often not known ahead of time, and prema-
ture optimization of a design for any particular performance
criterion can make it cost-prohibitive for other, unforseen
applications.

Driving Down Cost

One challenge (among many) currently limiting widespread
deployment of robots is simple to express: robots are expen-
sive. Many robotic manipulators used today for mobile ma-
nipulation experiments cost tens or hundreds of thousands of
dollars. This cost presents a barrier to entry to the field, and
promotes a “mainframe mentality” among researchers in a
laboratory who must time-share access to the mobile ma-
nipulator. Risky experiments and field studies are often not
performed, out of fear that robot downtime can lead to ex-
pensive repairs or impede the progress of other researchers
sharing the robot.

Cost reduction would naturally follow production volume
if and when robots find a place in the mass market. How-
ever, even before that occurs, we believe that significant
cost reduction can occur without overly sacrificing perfor-

Figure 1: Unstructured manipulation tasks envisioned to
be performed by service robots include door-opening and
grasping common household objects. Pictured here only to
illustrate that many such tasks can tolerate errors of a few
millimeters, provided some measure of compliance exists in
the mechanism or its control scheme.

mance on tasks performed by mobile manipulators in home
and office environments. Moreover, we believe that it may
even be necessary for cost reduction to occur before a mass-
market application can be found for mobile manipulation. In
some sense, complex general-purpose robots today are stuck
in a chicken-and-egg situation: they are so expensive that
economically justified mass-market applications are hard to
imagine, yet without a mass-market application driving pro-
duction volumes, current robots will likely remain expen-
sive.

Our approach is intended to follow the historical exam-
ples mentioned in the previous section. Rather than push the
limits of performance, the OpenArms project seeks to de-
velop a manipulator at an accessible price point, yet which
still offers enough functionality to perform useful tasks in a
typical home or office. Such a manipulator will measure sig-
nificantly worse on performance metrics frequently used to

specify industrial manipulators, yet it may be buildable for
a small fraction of the cost. We note that the manipulation
tasks shown in Figures 1 require accuracies on the order of
millimeters. Better accuracy and repeatability figures, while
welcome, are not strictly required.

Scalable and Open Software

Scalable, open-source software takes the vision of low-cost
hardware one step further: it can provide a powerful set of
tools to a large community at essentially no cost. Our inter-
est in large-scale open software stems from our work on the
STanford AI Robot (STAIR) project, where we are seeking
to develop the technology necessary to put a useful general-
purpose robot in every home. As part of this research vi-
sion, we have spent significant time exploring the integra-
tion challenges common to large robotics projects. We have
constructed several mobile platforms equipped with manipu-
lators and various sensors, and performed demonstrations of
various tasks which required significant interaction between
various subfields of Al, such as fetching items from offices,
using doors and elevators to navigate buildings, and unload-
ing dishwashers (Quigley, Berger, and Ng 2007), (Kling-
beil, Saxena, and Ng 2008), (Saxena, Driemeyer, and Ng
2007).

We have found that large numbers of people with vari-
ous areas of expertise are required to implement solutions to
these broad problems. Further, we found that software inte-
gration is a non-trivial issue, particularly when many layers
of the software stack are undergoing simultaneous develop-
ment. This problem is not unique to robotics, but it can be
especially challenging when numerous computers and hard-
ware devices must work in parallel to perform a particular
task.

To address these challenges, we produced a series of soft-
ware development frameworks, and have been working, to-
gether with colleagues at Willow Garage, on the Robot Op-
erating System, ROS (Quigley et al. 2009). The cen-
tral premise behind ROS, and similar frameworks such as
YARP (Fitzpatrick, Metta, and Natale 2008), is that complex
systems are more easily built as a collection of small pro-
grams, as opposed to a monolithic programming model. In-
terconnections between the small programs are managed au-
tomatically, providing transparent communications between
programs running on various computers. Rigid modular-
ity aids debugging and unit-testing of the complex systems
which quickly arise in large-scale robotic integration.

Furthermore, open interfaces between the various soft-
ware components allows for “hot-swapping” software mod-
ules. Coupled with logging and playback mechanisms,
this allows for meaningful and reproducible performance
comparisons between various algorithmic approaches at any
layer of the software stack. Due to the open-ended nature of
many Al problems, such flexibility is essential.

Auvailablity of high-quality, open-source robotics software
further expands the pool of robotics experimenters by facil-
itating experimentation: any particular piece of the system
can be examined, swapped out, and tested independently.
Large-scale operational systems can be incrementally modi-
fied rather than built from scratch—for example, an alterna-

Figure 2: A prototype of the ideas discussed in this paper: a
low-cost manipulator of roughly anthropomorphic size, built
using readily-available or easily-machined parts.

tive grasp-point generation algorithm can be swapped into a
working mobile manipulator.

OpenArms Prototype

To test these design concepts and try to define the “function-
ality floor,” or the minimum set of capabilities required for
useful manipulation in unstructured environments, we con-
structed the manipulator shown in Figure 2, an early ver-
sion of which was shown at the 2009 IJCAI Robotics Work-
shop. The manipulator was designed with a budgetary goal
of $1000 USD. It has roughly anthropomorphic dimensions
and sufficient power, in some common configurations, to lift
items such as drink bottles and common kitchen tools. Its
design includes cheap, readily available, mass-produced me-
chanical components. Its structure consists of lasercut ply-
wood and polypropylene plastic, a rapid-prototyping process
available in many research laboratories as well as through
web-based machine shops. In lieu of high-precision joint
encoders, we employed 3D MEMS accelerometers to infer
joint angles.

The overarching idea of the prototype is to shift complex-
ity away from high-precision mechanisms and instead focus
efforts on perception and control software. This is driven by
the observation that complex software can be replicated with
essentially no cost, whereas complex mechanisms often re-

Figure 3: The shoulder is designed around the size con-
straints of commodity windshield-wiper motors, and uses
a remote center of motion design to permit a wide range
of motion while preserving the mechanical simplicity of a
direct-drive configuration.

Figure 4: The wrist uses a friction-drive differential formed
from rollerblade wheels and lasercut aluminum.

quire high production volumes to be cheaply replicable.

We employed mass-produced geared motors in direct-
drive configurations where possible, to maximize mechan-
ical simplicity. These motors, commonly used in automo-
bile windshield wiper assemblies, are readily available and
inexpensive. The shoulder was essentially designed around
these motors, as shown in Figure 3.

The wrist is a friction-drive differential, using belt-driven
roller-blade wheels as the load-bearing components. The
wheels are tightly pressed against a lasercut aluminum plate,
as shown in Figure 4. Because the compressed rubber
wheels offer essentially zero backlash, this low-cost mecha-
nism offers surprisingly high performance and torque trans-
fer.

The gripper (Figure 5) is fabricated from lasercut
polypropylene. Each finger is directly-driven by a low-cost
gearmotor. To support parallel grasping tasks while incur-
ring minimal cost, four-bar linkages are formed using flex-
ures, or “living hinges.”

Our choice of accelerometers for joint-angle sensing was
by cost: due to their incorporation in mass-market products

Figure 5: The gripper is fabricated from lasercut polypropy-
lene, using flexures to create four-bar mechanisms. The
small belts are used only to turn potentiometers to measure
the finger positions; drive torques come from small gearmo-
tors mounted directly below each finger.

such as cell phones and digital cameras, high-resolution ac-
celerometers cost only a few dollars. We included an ac-
celerometer in the design of our motor controllers (which fly
on each link), and used their measurement of the direction
of the gravity vector to infer the joint angle. An Extended
Kalman Filter is used to combine knowledge of the kine-
matic parameters of the manipulator with the sensor stream,
and thereby estimate the joint angles. Sensing singularities
are present when a joint axis is vertical, and such situations
must be avoided, and large accelerations or joint velocities
can cause difficulties. Despite these limitations, we proto-
typed the low-cost accelerometer-based sensing scheme to
more fully understand its capabilities and drawbacks.

All elements of our manipulator are open-source, includ-
ing the mechanical and electrical designs as well as all
firmware and software. We hope that this level of openness
will spur further refinements and contributions, as all layers
of the design are accessible, repairable, and tweakable.

The full technical design of our prototype can be found at
http://openarms.stanford.edu

Challenges and Future Work

We intend to continue exploring low-cost manipulator de-
sign, seeking to define and implement the minumum set of
features and performance metrics needed for various un-
structured manipulation problems. An important direction
for future work involves expanding the sensor suite of the
prototype manipulator described in this paper. Although
the accelerometer-only sensing scheme works well under
static conditions, a straightforward implementation of this
scheme, coupled with the “cogging” of commodity gearmo-
tors, can lead to instabilities under high accelerations. In
future work, we plan to enhance the high-dynamic perfor-
mance of our prototype manipulators with joint encoders, as
well as continue the process of improving the mechanical
properties of the structures and joints.

References

Brooke, L. 2008. Ford Model T: The Car That Put the
World on Wheels. Motorbooks.

Fitzpatrick, P.; Metta, G.; and Natale, L. 2008. Towards
long-lived robot genes. Robotics and Autonomous Systems
56.

Klingbeil, E.; Saxena, A.; and Ng, A. 2008. Learning
to open new doors. Robotics Science and Systems (RSS)
Workshop on Robot Manipulation.

Quigley, M.; Berger, E.; and Ng, A. 2007. Stair: Hardware
and software architecture. AAAI Robotics Workshop.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. Y. 2009.
Ros: an open-source robot operating system. Open-Source
Software workshop of the IEEE International Conference
on Robotics and Automation.

Saxena, A.; Driemeyer, J.; and Ng, A. Y. 2007. A vision-
based system for grasping novel objects in cluttered envi-
ronments. International Symposium on Robotics Research
(ISRR).

Wozniak, S., and Smith, G. 2007. iWoz: Computer Geek
to Cult Icon: How I Invented the Personal Computer, Co-
Founded Apple, and Had Fun Doing It. W.W. Norton.

